Wednesday, June 23, 2021

Tensorflow Official Object Detection Tutorial


#Tensorflow official tutorial - beach image

#https://github.com/tensorflow/hub/blob/master/examples/colab/tf2_object_detection.ipynb




# Clone the tensorflow models repository

!git clone --depth 1 https://github.com/tensorflow/models


%%bash

sudo apt install -y protobuf-compiler

cd models/research/

protoc object_detection/protos/*.proto --python_out=.

cp object_detection/packages/tf2/setup.py .

python -m pip install .






import os

import pathlib


import matplotlib

import matplotlib.pyplot as plt


import io

import scipy.misc

import numpy as np

from six import BytesIO

from PIL import Image, ImageDraw, ImageFont

from six.moves.urllib.request import urlopen


import tensorflow as tf

import tensorflow_hub as hub


tf.get_logger().setLevel('ERROR')



# @title Run this!!


def load_image_into_numpy_array(path):

  """Load an image from file into a numpy array.


  Puts image into numpy array to feed into tensorflow graph.

  Note that by convention we put it into a numpy array with shape

  (height, width, channels), where channels=3 for RGB.


  Args:

    path: the file path to the image


  Returns:

    uint8 numpy array with shape (img_height, img_width, 3)

  """

  image = None

  if(path.startswith('http')):

    response = urlopen(path)

    image_data = response.read()

    image_data = BytesIO(image_data)

    image = Image.open(image_data)

  else:

    image_data = tf.io.gfile.GFile(path, 'rb').read()

    image = Image.open(BytesIO(image_data))


  (im_width, im_height) = image.size

  return np.array(image.getdata()).reshape(

      (1, im_height, im_width, 3)).astype(np.uint8)



ALL_MODELS = {

'CenterNet HourGlass104 512x512' : 


'https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1',

'CenterNet HourGlass104 Keypoints 512x512' : 


'https://tfhub.dev/tensorflow/centernet/hourglass_512x512_kpts/1',

'CenterNet HourGlass104 1024x1024' : 


'https://tfhub.dev/tensorflow/centernet/hourglass_1024x1024/1',

'CenterNet HourGlass104 Keypoints 1024x1024' : 


'https://tfhub.dev/tensorflow/centernet/hourglass_1024x1024_kpts/1',

'CenterNet Resnet50 V1 FPN 512x512' : 


'https://tfhub.dev/tensorflow/centernet/resnet50v1_fpn_512x512/1',

'CenterNet Resnet50 V1 FPN Keypoints 512x512' : 


'https://tfhub.dev/tensorflow/centernet/resnet50v1_fpn_512x512_kpts/1',

'CenterNet Resnet101 V1 FPN 512x512' : 


'https://tfhub.dev/tensorflow/centernet/resnet101v1_fpn_512x512/1',

'CenterNet Resnet50 V2 512x512' : 


'https://tfhub.dev/tensorflow/centernet/resnet50v2_512x512/1',

'CenterNet Resnet50 V2 Keypoints 512x512' : 


'https://tfhub.dev/tensorflow/centernet/resnet50v2_512x512_kpts/1',

'EfficientDet D0 512x512' : 'https://tfhub.dev/tensorflow/efficientdet/d0/1',

'EfficientDet D1 640x640' : 'https://tfhub.dev/tensorflow/efficientdet/d1/1',

'EfficientDet D2 768x768' : 'https://tfhub.dev/tensorflow/efficientdet/d2/1',

'EfficientDet D3 896x896' : 'https://tfhub.dev/tensorflow/efficientdet/d3/1',

'EfficientDet D4 1024x1024' : 'https://tfhub.dev/tensorflow/efficientdet/d4/1',

'EfficientDet D5 1280x1280' : 'https://tfhub.dev/tensorflow/efficientdet/d5/1',

'EfficientDet D6 1280x1280' : 'https://tfhub.dev/tensorflow/efficientdet/d6/1',

'EfficientDet D7 1536x1536' : 'https://tfhub.dev/tensorflow/efficientdet/d7/1',

'SSD MobileNet v2 320x320' : 'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2',

'SSD MobileNet V1 FPN 640x640' : 


'https://tfhub.dev/tensorflow/ssd_mobilenet_v1/fpn_640x640/1',

'SSD MobileNet V2 FPNLite 320x320' : 


'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_320x320/1',

'SSD MobileNet V2 FPNLite 640x640' : 


'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_640x640/1',

'SSD ResNet50 V1 FPN 640x640 (RetinaNet50)' : 


'https://tfhub.dev/tensorflow/retinanet/resnet50_v1_fpn_640x640/1',

'SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50)' : 


'https://tfhub.dev/tensorflow/retinanet/resnet50_v1_fpn_1024x1024/1',

'SSD ResNet101 V1 FPN 640x640 (RetinaNet101)' : 


'https://tfhub.dev/tensorflow/retinanet/resnet101_v1_fpn_640x640/1',

'SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101)' : 


'https://tfhub.dev/tensorflow/retinanet/resnet101_v1_fpn_1024x1024/1',

'SSD ResNet152 V1 FPN 640x640 (RetinaNet152)' : 


'https://tfhub.dev/tensorflow/retinanet/resnet152_v1_fpn_640x640/1',

'SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152)' : 


'https://tfhub.dev/tensorflow/retinanet/resnet152_v1_fpn_1024x1024/1',

'Faster R-CNN ResNet50 V1 640x640' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet50_v1_640x640/1',

'Faster R-CNN ResNet50 V1 1024x1024' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet50_v1_1024x1024/1',

'Faster R-CNN ResNet50 V1 800x1333' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet50_v1_800x1333/1',

'Faster R-CNN ResNet101 V1 640x640' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet101_v1_640x640/1',

'Faster R-CNN ResNet101 V1 1024x1024' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet101_v1_1024x1024/1',

'Faster R-CNN ResNet101 V1 800x1333' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet101_v1_800x1333/1',

'Faster R-CNN ResNet152 V1 640x640' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet152_v1_640x640/1',

'Faster R-CNN ResNet152 V1 1024x1024' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet152_v1_1024x1024/1',

'Faster R-CNN ResNet152 V1 800x1333' : 


'https://tfhub.dev/tensorflow/faster_rcnn/resnet152_v1_800x1333/1',

'Faster R-CNN Inception ResNet V2 640x640' : 


'https://tfhub.dev/tensorflow/faster_rcnn/inception_resnet_v2_640x640/1',

'Faster R-CNN Inception ResNet V2 1024x1024' : 


'https://tfhub.dev/tensorflow/faster_rcnn/inception_resnet_v2_1024x1024/1',

'Mask R-CNN Inception ResNet V2 1024x1024' : 


'https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1'

}


IMAGES_FOR_TEST = {

  'Beach' : 'models/research/object_detection/test_images/image2.jpg',

  'Dogs' : 'models/research/object_detection/test_images/image1.jpg',

  # By Heiko Gorski, Source: https://commons.wikimedia.org/wiki/File:Naxos_Taverna.jpg

  'Naxos Taverna' : 


'https://upload.wikimedia.org/wikipedia/commons/6/60/Naxos_Taverna.jpg',

  # Source: https://commons.wikimedia.org/wiki/File:The_Coleoptera_of_the_British_islands_


(Plate_125)_(8592917784).jpg

  'Beatles' : 


'https://upload.wikimedia.org/wikipedia/commons/1/1b/The_Coleoptera_of_the_British_islands_


%28Plate_125%29_%288592917784%29.jpg',

  # By Américo Toledano, Source: https://commons.wikimedia.org/wiki/File:Biblioteca_Maim


%C3%B3nides,_Campus_Universitario_de_Rabanales_007.jpg

  'Phones' : 'https://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Biblioteca_Maim


%C3%B3nides%2C_Campus_Universitario_de_Rabanales_007.jpg/1024px-Biblioteca_Maim%C3%B3nides


%2C_Campus_Universitario_de_Rabanales_007.jpg',

  # Source: https://commons.wikimedia.org/wiki/File:The_smaller_British_birds_


(8053836633).jpg

  'Birds' : 


'https://upload.wikimedia.org/wikipedia/commons/0/09/The_smaller_British_birds_


%288053836633%29.jpg',

}


COCO17_HUMAN_POSE_KEYPOINTS = [(0, 1),

 (0, 2),

 (1, 3),

 (2, 4),

 (0, 5),

 (0, 6),

 (5, 7),

 (7, 9),

 (6, 8),

 (8, 10),

 (5, 6),

 (5, 11),

 (6, 12),

 (11, 12),

 (11, 13),

 (13, 15),

 (12, 14),

 (14, 16)]



from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as viz_utils

from object_detection.utils import ops as utils_ops


%matplotlib inline



PATH_TO_LABELS = './models/research/object_detection/data/mscoco_label_map.pbtxt'

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, 


use_display_name=True)



#@title Model Selection { display-mode: "form", run: "auto" }

model_display_name = 'CenterNet HourGlass104 Keypoints 512x512' # @param ['CenterNet 


HourGlass104 512x512','CenterNet HourGlass104 Keypoints 512x512','CenterNet HourGlass104 


1024x1024','CenterNet HourGlass104 Keypoints 1024x1024','CenterNet Resnet50 V1 FPN 


512x512','CenterNet Resnet50 V1 FPN Keypoints 512x512','CenterNet Resnet101 V1 FPN 


512x512','CenterNet Resnet50 V2 512x512','CenterNet Resnet50 V2 Keypoints 


512x512','EfficientDet D0 512x512','EfficientDet D1 640x640','EfficientDet D2 


768x768','EfficientDet D3 896x896','EfficientDet D4 1024x1024','EfficientDet D5 


1280x1280','EfficientDet D6 1280x1280','EfficientDet D7 1536x1536','SSD MobileNet v2 


320x320','SSD MobileNet V1 FPN 640x640','SSD MobileNet V2 FPNLite 320x320','SSD MobileNet 


V2 FPNLite 640x640','SSD ResNet50 V1 FPN 640x640 (RetinaNet50)','SSD ResNet50 V1 FPN 


1024x1024 (RetinaNet50)','SSD ResNet101 V1 FPN 640x640 (RetinaNet101)','SSD ResNet101 V1 


FPN 1024x1024 (RetinaNet101)','SSD ResNet152 V1 FPN 640x640 (RetinaNet152)','SSD ResNet152 


V1 FPN 1024x1024 (RetinaNet152)','Faster R-CNN ResNet50 V1 640x640','Faster R-CNN ResNet50 


V1 1024x1024','Faster R-CNN ResNet50 V1 800x1333','Faster R-CNN ResNet101 V1 


640x640','Faster R-CNN ResNet101 V1 1024x1024','Faster R-CNN ResNet101 V1 800x1333','Faster 


R-CNN ResNet152 V1 640x640','Faster R-CNN ResNet152 V1 1024x1024','Faster R-CNN ResNet152 


V1 800x1333','Faster R-CNN Inception ResNet V2 640x640','Faster R-CNN Inception ResNet V2 


1024x1024','Mask R-CNN Inception ResNet V2 1024x1024']

model_handle = ALL_MODELS[model_display_name]


print('Selected model:'+ model_display_name)

print('Model Handle at TensorFlow Hub: {}'.format(model_handle))



print('loading model...')

hub_model = hub.load(model_handle)

print('model loaded!')



#@title Image Selection (don't forget to execute the cell!) { display-mode: "form"}

selected_image = 'Beach' # @param ['Beach', 'Dogs', 'Naxos Taverna', 'Beatles', 'Phones', 


'Birds']

flip_image_horizontally = False #@param {type:"boolean"}

convert_image_to_grayscale = False #@param {type:"boolean"}


image_path = IMAGES_FOR_TEST[selected_image]

image_np = load_image_into_numpy_array(image_path)


# Flip horizontally

if(flip_image_horizontally):

  image_np[0] = np.fliplr(image_np[0]).copy()


# Convert image to grayscale

if(convert_image_to_grayscale):

  image_np[0] = np.tile(

    np.mean(image_np[0], 2, keepdims=True), (1, 1, 3)).astype(np.uint8)


plt.figure(figsize=(24,32))

plt.imshow(image_np[0])

plt.show()




# running inference

results = hub_model(image_np)


# different object detection models have additional results

# all of them are explained in the documentation

result = {key:value.numpy() for key,value in results.items()}

print(result.keys())



label_id_offset = 0

image_np_with_detections = image_np.copy()


# Use keypoints if available in detections

keypoints, keypoint_scores = None, None

if 'detection_keypoints' in result:

  keypoints = result['detection_keypoints'][0]

  keypoint_scores = result['detection_keypoint_scores'][0]


viz_utils.visualize_boxes_and_labels_on_image_array(

      image_np_with_detections[0],

      result['detection_boxes'][0],

      (result['detection_classes'][0] + label_id_offset).astype(int),

      result['detection_scores'][0],

      category_index,

      use_normalized_coordinates=True,

      max_boxes_to_draw=200,

      min_score_thresh=.30,

      agnostic_mode=False,

      keypoints=keypoints,

      keypoint_scores=keypoint_scores,

      keypoint_edges=COCO17_HUMAN_POSE_KEYPOINTS)


plt.figure(figsize=(24,32))

plt.imshow(image_np_with_detections[0])

plt.show()



# Handle models with masks:

image_np_with_mask = image_np.copy()


if 'detection_masks' in result:

  # we need to convert np.arrays to tensors

  detection_masks = tf.convert_to_tensor(result['detection_masks'][0])

  detection_boxes = tf.convert_to_tensor(result['detection_boxes'][0])


  # Reframe the the bbox mask to the image size.

  detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(

            detection_masks, detection_boxes,

              image_np.shape[1], image_np.shape[2])

  detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,

                                      tf.uint8)

  result['detection_masks_reframed'] = detection_masks_reframed.numpy()


viz_utils.visualize_boxes_and_labels_on_image_array(

      image_np_with_mask[0],

      result['detection_boxes'][0],

      (result['detection_classes'][0] + label_id_offset).astype(int),

      result['detection_scores'][0],

      category_index,

      use_normalized_coordinates=True,

      max_boxes_to_draw=200,

      min_score_thresh=.30,

      agnostic_mode=False,

      instance_masks=result.get('detection_masks_reframed', None),

      line_thickness=8)


plt.figure(figsize=(24,32))

plt.imshow(image_np_with_mask[0])

plt.show()


x

No comments:

Post a Comment

How to check local and global angular versions

 Use the command ng version (or ng v ) to find the version of Angular CLI in the current folder. Run it outside of the Angular project, to f...