Wednesday, June 23, 2021

IOU Calculations

 1. check https://www.programcreek.com/python/?CodeExample=get+iou

Example 51 : properly explains the concept, only include  a small number in denominator 1e-8 to avoid divide by zero 

iou = intersection / (area1 + area2 - intersection + 1e-8)

Example 54 : provides a good implementation using tf

2. lu and rd refer to left up and right down points. 
    lu = tf.maximum(boxes1_corners[:, None, :2], boxes2_corners[:, :2])
    rd = tf.minimum(boxes1_corners[:, None, 2:], boxes2_corners[:, 2:])
    intersection = tf.maximum(0.0, rd - lu)


3. The following is an implementation from https://github.com/srihari-humbarwadi/YOLOv1-TensorFlow2.0/blob/master/yolo_v1.py

def compute_iou(boxes1, boxes2): boxes1_t = tf.stack([boxes1[..., 0] - boxes1[..., 2] / 2.0, boxes1[..., 1] - boxes1[..., 3] / 2.0, boxes1[..., 0] + boxes1[..., 2] / 2.0, boxes1[..., 1] + boxes1[..., 3] / 2.0], axis=-1) boxes2_t = tf.stack([boxes2[..., 0] - boxes2[..., 2] / 2.0, boxes2[..., 1] - boxes2[..., 3] / 2.0, boxes2[..., 0] + boxes2[..., 2] / 2.0, boxes2[..., 1] + boxes2[..., 3] / 2.0], axis=-1) lu = tf.maximum(boxes1_t[..., :2], boxes2_t[..., :2]) rd = tf.minimum(boxes1_t[..., 2:], boxes2_t[..., 2:]) intersection = tf.maximum(0.0, rd - lu) inter_square = intersection[..., 0] * intersection[..., 1] square1 = boxes1[..., 2] * boxes1[..., 3] square2 = boxes2[..., 2] * boxes2[..., 3] union_square = tf.maximum(square1 + square2 - inter_square, 1e-10) return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)

No comments:

Post a Comment

How to check local and global angular versions

 Use the command ng version (or ng v ) to find the version of Angular CLI in the current folder. Run it outside of the Angular project, to f...