Following is the code for generator for MNIST DCGAN
import tensorflow as tf
from tensorflow import keras
from keras import layers
import matplotlib.pyplot as plt
img_height = 40
img_width = 80
model = keras.models.Sequential()
model.add(layers.Dense(img_height/4 * img_width /4 * 256 , use_bias = False,
input_shape = (100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape(( int(img_height/4) , int(img_width/4) , 256)))
model.add(layers.Conv2DTranspose(128 , 5, strides = 1 , padding = "same" ,
use_bias = False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, 5, strides = 2 , use_bias = False,
padding = "same"))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, 5, strides = 2 , use_bias = False ,
padding = "same"))
noise = tf.random.normal([1,100])
gen_image = model(noise , training = False)
plt.imshow(gen_image[0, :, :, 0])
No comments:
Post a Comment